If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2=120^2+70^2
We move all terms to the left:
x^2-(120^2+70^2)=0
We add all the numbers together, and all the variables
x^2-19300=0
a = 1; b = 0; c = -19300;
Δ = b2-4ac
Δ = 02-4·1·(-19300)
Δ = 77200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{77200}=\sqrt{400*193}=\sqrt{400}*\sqrt{193}=20\sqrt{193}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-20\sqrt{193}}{2*1}=\frac{0-20\sqrt{193}}{2} =-\frac{20\sqrt{193}}{2} =-10\sqrt{193} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+20\sqrt{193}}{2*1}=\frac{0+20\sqrt{193}}{2} =\frac{20\sqrt{193}}{2} =10\sqrt{193} $
| 28+22.75x=50+17.25x | | 7*y-4-7=0 | | 9*a-2+15=33 | | 5*x+2-7=-32 | | -x-4(-4x)=-4x+5 | | 4a^2-11a-18=0 | | 10*h+1-4=76 | | 6x-40+110÷x=0 | | 10(h+1)—4=76 | | 6x-40+110÷x=4x | | 1+x^2+x=13x/3 | | 0.8=0.2+x-0.2 | | E(x)=56x*x+80x+24 | | 5/2+x/2=15 | | 2x+19=x+21 | | 4t^2+3t+3=4 | | 5(x-8)=–4(x+4)+9-x | | 9x+5=42 | | y+(y+6)=24 | | 2(x+5)+9=x+22 | | V(h)=-2h×-2h+40h | | -x-18=2x+6 | | 7x−16=33 | | -3x-36=5(5x+4) | | 6x+3-x=18 | | 33=5(2x+3)-2 | | 7x-40=2xx= | | (x-2)+4x-4=9 | | 2y+y+(y-7)=57 | | (x-2)^2+4x-4=9 | | 3(2x+2)=-4x-34 | | -1,125x^2+9x=0 |